Some comments, if I may.
In case others are wondering what the previous posts are talking about, Bob's explanation is on the money. It is possible, using a standard algebraic technique usually called 'solving simultaneous equations' to figure out where two lines intersect on a graph. For the upper forward section of the envelope on the weight by IU arrangement, the envelope line equation is a curve (quadratic) while the aft compartment load is a straight line. The line on the graphed envelope looks like it is straight but that is only due to the datum chosen - were we to select a better datum, the curve can be seen fairly easily.
Looking at the example cited in the textbook, the preferred approach for itinerant calculations, such as the line pilot does, is to plot load increments to find the intersection. In the example given, Bob comes up with 40 kg to be added by inspection of the graph. Were we to do the exercise algebraically, the answer is 38.2 kg (to the first decimal) - not much in it, is there ? Certainly, that sort of accuracy is more than fine for practical weight and balance work.
Generally, the pilot is best served by plotting as shown in the textbook.
The folks who would use the algebraic approach are
(a) we instructors - to save time. For instance, I have the various aircraft set up in Excel and, for the example given, all I had to do was type in the starting weight and IU and then look in the solution table for the load change for the aft baggage arm. That took all of, probably, 5 seconds ? Bob, I am sure, would have the same sort of thing set up for his use as would any of the active ground instructors.
(b) small charter operators who can't afford to buy/lease the large operator style load control system packages
So, why don't we just do this generally ? That's easy. The equations have to be figured out for every different aircraft and the software set up to run the sums. Unless you are going to use it over and over and over again, it's just not worth the effort.
In answer to Dave's question on aircraft types, following a search over several coffees some years ago, the story is -
(a) alpha, bravo and charlie are, respectively, turbo Lance, Cheetah, and Sundowner. As a side note, be wary of the alpha trimsheet. The original is a design by Norm Overmeyer (a pleasant civil engineer and weight control officer no longer with us) which was modified, at the then examiner's request, by Bruce Clissold (likewise a very pleasant WCO chap in semi-retirement). The original version, unfortunately, is still floating around - see the following thread for a discussion -
bobtait.com.au/forum/performance/5279-we...0-may-2015-book#8645
(b) the echo doesn't map across to any particular aircraft that I could find without spending way too much time on the exercise. My assessment is that the then examiner ran up a list of desired questions/techniques which he wanted to test in the CPL exam. He then started, probably with the Piper Navajo (there are some similarities between the echo and the Navajo), and played with the aircraft data until he arrived at a set of numbers which would produce the desired results for his exam questions.
At the end of the day, it really doesn't matter what aircraft the various exam aircraft may, or may not, be. The loading systems are reasonably typical of what you might see out in the Industry and that is the aim of the exercise. Certainly, you will see plenty of other styles of loading system but one has to start somewhere.