SlimHeader

facebook_page_plugin
×
PPL Video Lectures (10 Jul 2020)

PPL Video Lectures covering Aerodynamics, General Knowledge, Performance, Meteorology And Navigation are now available through our website see front page for details.

× Welcome to the CPL Aerodynamics question and answer forum. Please feel free to post your questions but more importantly also suggest answers for your forum colleagues. Bob himself or one of the other tutors will get to your question as soon as we can.

Minimum total drag occurs where the two drag curves cross

  • Posts: 37
  • Thank you received: 2

baddles created the topic: Minimum total drag occurs where the two drag curves cross

Hi all, just wanted to share an insight about minimum drag.

We're used to seeing the total drag curve, which is the sum of two curves, the induced drag and parasite drag, like this:


The textbooks all say that the minimum value of total drag is achieved where the two drag curves intersect, that is, where induced drag equals parasite drag. The picture seems to confirm it.

But this kind of statement is not true in general - if you have any old two curves, one decreasing and one increasing, then the total of the two curves is usually not minimised where the curves cross. Here is a counterexample, in which the downward-sloping green curve is y = 16/x and the upward sloping blue curve is y = x2.



This was driving me crazy - until I realised that the drag curve is a special case. The parasite drag is proportional to V2 and the induced drag is proportional to 1/V2 where V is the IAS. With a bit of calculus, it turns out that the minimum is achieved where the curves cross.

The rule that "the minimum happens where the curves cross" is only true because of the special shapes of these curves.
#1
Attachments:

Please Log in or Create an account to join the conversation.

Time to create page: 0.323 seconds